SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title:	DIGITAL ELECTRONICS
Code No.:	ELN 107-5
Program:	ELECTRICAL/ELECTRONIC TECHNICIAN
Semester:	TWO
Date:	AUGUST 1986
Author:	P. SZILAGYI

New:_____ Revision:___X

APPROVED:

1 .

P. Arguitto Chairperson

Date

LOGIC & SWITCHING CIRCUITS ELN 107

NUMBER OF THEORY PERIODS: 28 NUMBER OF LABORATORY PERIODS: 21

PREREQUISITES: ELN 100, Electronic I

TEXTBOOKS: Digital Fundamentals (2nd Ed.), by Thomas L. Floyd

National Logic Data Book

BLOCKS	THEORY PERIODS	TOPIC DESCRIPTION	REFERENCE CHAPTERS
I	9	Logic Gates and Combinational Logic Boolean Algebra	1, 2, 3, 5, A
II	7	Integrated Circuit Technologies Functions of Combinational Logic	A 6
III	9	Flip-Flops, Counters and Registers	7,8
IV	3	Interfacing and Data Transfer	10

OBJECTIVES

BLOCK I:	THEORY PERIODS		
Introduction Logic funct	1		
Logic Gates gates. Tru parameters	. 3		
Boolean Alge Simplificat	1		
Combinationa and simplifi and inhibit of the inver OR- INVERT exclusive NO	3		
BLOCK TEST	. 1		
BLOCK II:			
Integrated Circuit Technologies: TTL versus CMOS. Low power, Scmottky, ECL, I ² L logic			
Functions or binary adder multiplexers - checkers	4		
BLOCK TEST		. 1	
BLOCK III:			
<u>Flip-Flops</u> :	S-R Latches - cross-coupled NAND - cross-coupled NOR D Latch Edge triggered S-R Flip-Flop Master-Slave S-R Flip-Flop Edge triggered D Flip-Flop J-K Flip-Flops Electrical and Switching Characteristics One-Shot (Monostable) Multivibrator	3	

- 2 -

Counters: Binary Counters Decade Counters Asynchronous Counters Synchronous Counters Up-Down Synchronous Counters Cascaded Counters

Shift Registers: Serial in - serial out registers Parallel in - serial out registers Serial in - parallel out registers Parallel in - parallel out Bidirectional shift registers

BLOCK IV:

Interfacing and Data Transfer: Three st.

Three state buffer The Schmitt trigger Digital to analog conversion Analog to digital conversion 4

2

2

1

BLOCK TEST (III & IV)

- 3 -

SPECIFIC OBJECTIVES

- 4 -

BLOCK I: Logic Gates and Combinational Logic

At the end of this block, the student will be able to:

- 1) Distinguish an analog and a digital signal.
- 2) Recall the meaning of the positive and negative logic, high and low level, leading and trailing edge of a digital signal.
- 3) Represent digital information in serial and parallel form with waveforms. Identify MSB and LSB.
- Recall nonideal pulse characteristics and waveforms.
- 5) Draw logic symbols and truth tables for NOT, AND, NAND, OR, NOR operation.
- 6) Analyse TTL and CMOS logic gate circuit diagrams.
- Recall logic gate parameters: unit load, fan out, input and output voltage level, input and output current, noise margin, supply current, turn on delay, turn-off delay, gate propagation delay and operating frequence.
- Given a logic diagram, write and simplify the corresponding Boolean equation.
- 9) Given a Boolean equation, produce a logic diagram using specified types of gates to implement the equation.
- 10) Use logic gates to enable or inhibit the passage of digital signals.
- Based on the universal property of the inverting gates, generate AND, NAND, OR, NOR functions with both NAND gate NOR gate.
- 12) Write the Boolean equation and draw the logic symbol of the AND-OR-INVERT operation.
- 13) Produce the truth table and the symbol of the exclusive OR and exclusive NOR gates.
- 14) Manipulate Boolean equations of logic diagrams including exclusive gates.

BLOCK II: Integrated Circuit Technologies

At the end of this block, the student will be able to:

- 15) Discuss power and speed characteristics of modern digital circuits, and describe the special tecniques used for high speed operation (Scmottky, ECL, $I^{2}L$).
- 16) Identify integrated circuits by the designated series number: (54/74; 54L/74L; 54M/74M; 54S/74S; 54LS/74LS).
- 17) Describe the use of open collector gates and wired logic functions.
- 18) Describe the use of tree state gates.

Functions of Combinational Logic

- 19) Use logic gates to produce a binary half adder and full adder. Recall truth table for the half adder and the full adder.
- 20) Draw the block diagram of a multibit binary adder.

 Use integrated circuit two bit and four bit adders to generate multibit adders.

- 5 -

- 22) Use exclusive OR gates to produce multibit parallel comparators.
- 23) Use integrated circuit four bit comparators to generate multibit parallel comparators.
- 24) Use logic gates to decode binary information.
- 25) Use integrated circuit 4 line to 16 line decoder and BCD decoder.
- 26) Use decoders like in-line readout drivers.
- 27) Use binary to 7 segment decoders.
- 28) Discuss the typical display techniques used with digital systems.
- 29) Recall the principle of encoding. Use integrated circuit decimal to BCD encoder.
- Use logic gates for a four input multiplexer and a four line demultiplexer.
- 31) Describe and discuss integrated circuit multiplexers and demultiplexers.
- 33) Use integrated circuit parity generator/checker.

BLOCK III:

At the end of this block, the student will be able to:

Flip-Flops

- 34) Recall the logic diagram, logic symbols, truth tables and functional operation of the following type of flip-flops:
 - set-reset crossed coupled NAND
 - set-reset crossed coupled NOR
 - D latch
 - edge triggered set-reset flip-flop
 - edge triggered D flip-flop
 - master-slave S-R flip-flop
 - J-K flip-flop.
- 35) Analyse and draw timing diagrams for the above flip-flops.
- 36) Use TTL data books to find electrical and switching characteristics of integrated circuit flip-flops.
- 37) Recall the logic diagrams, logic symbols and functional operations of integrated circuit one-shot monostable multivibrators.

Counters

- 38) Utilize standard flip-flops and gates to implement:
 - asynchronous counters
 - synchronous counters
 - binary counters
 - decade counters
 - modulus N counters
 - up-down counters

- 39) Use integrated circuit TTL four bit binary ripple counter for divide by N frequence divider.
- 40) Use cascaded counters for frequence divider.
- 41) Discuss and use integrated circuit four bit synchronous counters.
- 42) Discuss the digital clock like counter application.
- 43) Describe the operation of, and utilize standard flip-flops and gates to implement the following types of shift registers:
 - serial in serial out
 parallel in serial out
 serial in parallel out
 parallel in parallel out
 shift right shift left
- 44) Discuss and use integrated circuit four bit registers.

BLOCK IV: Interfacing and Data Transfer

At the end of this block, the student will be able to:

- 45) Use three state gates to interface digital devices to a bus.
- 46) Discuss bidirectional three State bus drivers.
- 47) Use the Schmitt trigger as an interface circuit.
- 48) Recall the operation and applications of D/A and A/D converters.
- 49) Recall the operation of a four bit binary weighted input D/A converter and of a four bit ladder D/A converter.
- 50) Recall the operation of the simultaneous, stair step ramp and tracking A/D converter.

LABORATORY ACTIVITY

JOB	1	-	Logic Gates - to reinforce specific objectives 5, 6, 7, 8, 11
JOB	2	-	Combinational Logic - to reinforce specific objectives 9, 10, 11, 12
JOB	3	-	Combinational Logic Functions - to reinforce specific objectives 25, 26, 27, 28, 31
JOB	4		Flip-Flops - to reinforce specific objectives 34, 35, 36
JOB	5	-	Counters - to reinforce specific objectives 39, 40, 41, 42
JOB	6	-	Shift Registers - to reinforce specific objectives 43, 44
JOB.	7	-	A/D and D/A Converters - to reinforce specific objectives 48, 49, 50

- 7 -